Preprints

  1. Blatt, S. (2020). A Reverse Isoperimetric Inequality and its Application to the Gradient Flow of the Helfrich Functional.
  2. Blatt, S. (2020). Analyticity for Solution of Integro-Differential Operators.
  3. Blatt, S. (2020). On the analyticity of solutions to non-linear elliptic partial differential systems.
  4. Blatt, S., Reiter, P., & Schikorra, A. (2019). On O’hara knot energies I: Regularity for critical knots.
  5. Blatt, S., Ishizeki, A., & Nagasawa, T. (2018). A Möbius invariant discretization of O’Hara’s Möbius energy.
  6. Blatt, S. (2009). Note on continuously differentiable isotopies. http://www.instmath.rwth-aachen.de/Preprints/blatt20090825.pdf
  7. Blatt, S. (2008). A Lower Bound for the Gromov Distortion of Knotted Submanifolds. https://www.instmath.rwth-aachen.de/Preprints/blatt20080808.pdf

Journal Articles

  1. Blatt, S. (2020). The gradient flow of the Möbius energy: \varepsilon-regularity and consequences. Analysis & PDE, 13(3), 901–941. https://doi.org/10.2140/apde.2020.13.901
  2. Blatt, S. (2019). A note on singularities in finite time for the \protectL^2 gradient flow of the Helfrich functional. Journal of Evolution Equations. https://doi.org/10.1007/s00028-019-00483-y
  3. Blatt, S. (2018). Curves Between Lipschitz and \protectC^1 and Their Relation to Geometric Knot Theory. The Journal of Geometric Analysis. https://doi.org/10.1007/s12220-018-00116-9
  4. Blatt, S., & Vorderobermeier, N. (2018). On the analyticity of critical points of the Möbius energy. Calculus of Variations and Partial Differential Equations, 58(1), 16. https://doi.org/10.1007/s00526-018-1443-6
  5. Blatt, S. (2017). Monotonicity formulas for extrinsic triharmonic maps and the triharmonic Lane–Emden equation. Journal of Differential Equations, 262(12), 5691–5734. https://doi.org/10.1016/j.jde.2017.01.025
  6. Blatt, S. (2017). The gradient flow of O’Hara’s knot energies. Mathematische Annalen, 1–69. https://doi.org/10.1007/s00208-017-1540-4
  7. Blatt, S., & Struwe, M. (2016). Well-posedness of the supercritical Lane–Emden heat flow in Morrey spaces. ESAIM: Control, Optimisation and Calculus of Variations, 22(4), 1370–1381. https://doi.org/10.1051/cocv/2016041
  8. Blatt, S., & Reiter, P. (2015). Towards a regularity theory for integral Menger curvature. Ann. Acad. Sci. Fenn. Math., 40(1), 149–181. https://doi.org/10.5186/aasfm.2015.4006
  9. Blatt, S., & Reiter, P. (2015). Regularity theory for tangent-point energies: the non-degenerate sub-critical case. Adv. Calc. Var., 8(2), 93–116. https://doi.org/10.1515/acv-2013-0020
  10. Blatt, S., Reiter, P., & Schikorra, A. (2015). Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth. Transactions of the American Mathematical Society. https://doi.org/10.1090/tran/6603
  11. Blatt, S., & Struwe, M. (2015). An Analytic Framework for the Supercritical Lane–Emden Equation and its Gradient Flow. Int. Math. Res. Not. IMRN, 9, 2342–2385. https://doi.org/10.1093/imrn/rnt359
  12. Blatt, S., & Struwe, M. (2015). Boundary regularity for the supercritical Lane-Emden heat flow. Calculus of Variations and Partial Differential Equations, 54(2), 2269–2284. https://doi.org/10.1007/s00526-015-0865-7
  13. Blatt, S., & Struwe, M. (2015). Erratum to: Boundary regularity for the supercritical Lane-Emden heat flow. Calculus of Variations and Partial Differential Equations, 54(2), 2285–2285. https://doi.org/10.1007/s00526-015-0901-7
  14. Blatt, S. (2013). The energy spaces of the tangent point energies. J. Topol. Anal., 5(3), 261–270. https://doi.org/10.1142/S1793525313500131
  15. Blatt, S. (2013). A note on integral Menger curvature for curves. Math. Nachr., 286(2-3), 149–159. https://doi.org/10.1002/mana.201100220
  16. Blatt, S., & Reiter, P. (2013). Stationary points of O’Hara’s knot energies. Manuscripta Math., 140(1-2), 29–50. https://doi.org/10.1007/s00229-011-0528-8
  17. Blatt, S. (2012). Boundedness and regularizing effects of O’Hara’s knot energies. J. Knot Theory Ramifications, 21(1), 1–9. https://doi.org/10.1142/S0218216511009704
  18. Blatt, S. (2012). The gradient flow of the Möbius energy near local minimizers. Calc. Var. Partial Differential Equations, 43(3-4), 403–439. https://doi.org/10.1007/s00526-011-0416-9
  19. Blatt, S., & Kolasiński, S. (2012). Sharp boundedness and regularizing effects of the integral Menger curvature for submanifolds. Adv. Math., 230(3), 839–852. https://doi.org/10.1016/j.aim.2012.03.007
  20. Blatt, S. (2010). Loss of convexity and embeddedness for geometric evolution equations of higher order. Journal of Evolution Equations, 10(1), 21–27. https://doi.org/10.1007/s00028-009-0038-2
  21. Blatt, H.-P., Blatt, S., & Luh, W. (2009). On a generalization of Jentzsch’s theorem. J. Approx. Theory, 159(1), 26–38. https://doi.org/10.1016/j.jat.2008.11.016
  22. Blatt, S. (2009). Chord-arc constants for submanifolds of arbitrary codimension. Adv. Calc. Var., 2(3), 271–309. https://doi.org/10.1515/ACV.2009.011
  23. Blatt, S. (2009). A singular example for the Willmore flow. Analysis, 29(4), 407–430. https://doi.org/10.1524/anly.2009.1017
  24. Blatt, S., & Reiter, P. (2008). Does finite knot energy lead to differentiability? Journal of Knot Theory and Its Ramifications, 17(10), 1281–1310. https://doi.org/10.1142/s0218216508006622

Proceedings

  1. Blatt, S., & Reiter, P. (2014). How nice are critical knots? Regularity theory for knot energies. Journal of Physics: Conference Series, 544(1), 012020. http://stacks.iop.org/1742-6596/544/i=1/a=012020
  2. Blatt, S., & Reiter, P. (2014). Modeling repulsive forces on fibres via knot energies. Molecular Based Mathematical Biology, 2(1), 29–50. https://doi.org/10.2478/mlbmb-2014-0004
  3. Blatt, S. (2013). The gradient flow of the Möbius energy. Oberwolfach Reports, 10(3), 2119–2153. https://doi.org/10.4171/OWR/2013/37
  4. Blatt, S. (2013). The gradient flow of the Möbius energy. Oberwolfach Reports, 10(2), 1313–1358. https://doi.org/10.4171/OWR/2013/22
  5. Blatt, S. (2008). Compactness results for the Ricci flow. Oberwolfach Reports, 5(4), 2621–2654. https://doi.org/10.4171/OWR/2008/46